concrete

Panel Making

This week the Thermal Mass and Buoyancy Ventilation Research Team got to use the largest skill saw they’ve ever seen and we’ll tell you why!

In the technical workshop Sal last week, the team decided to narrow the number of materials they will test throughout the experimental cycle from four to two. The lucky two will be concrete and softwood! Concrete is often used as a thermal mass material while softwood is not which will make comparing the data collected from the separate experiments all the more interesting. The Optimal Tuning Theory calls for the thermal mass to be externally insulated which allows the thermal mass material to be much thinner than a typical thermal mass. Therefore, the concrete and wood need to be panelized.

The thermal properties of wood act most efficiently as a thermal mass when the cross grain is exposed to the air. This means that panelizing the softwood is more like creating giant cutting boards. To practice this process the team used 8″ x 8″ Cypress timbers and their matching 16″ diameter skill saw leftover from the Newbern Town Hall project. The team learned that 6″ x 6″ timbers would be ideal for their project, that way they can cut the cross-grain pieces in one cut with their 16″ skill saw without having to rip down the timber.

The concrete panels are far more straightforward, build a mold, pour the concrete, let it cure. However, the team has to think about how the panels would be attached to a larger structure. To solve this they cast PVC into the panel which will allow it to be screwed into a structure.

Voila! We have much refining to do of the panel making process, but the first two turned out well. We also have here a rendering of the habitable structural with the separate concrete and wood panel rooms. Our next step is to apply what we learned working with these materials to designing and building our first experiment. Thermal Mass and Buoyancy Ventilation Research Team out.